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Alert! Automation of cheapfakes.
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NewsCLIPpings Dataset Overview

● Dataset of ~1M samples of news image repurposing.

● Diagnostic benchmark for machine generated misinformation.

● General automatic framework for generating challenging mismatches.

Fuxiao Liu, Yinghan Wang, Tianlu Wang, and Vicente Ordonez. 2020. Visualnews: A large multi-source news image dataset. EMNLP 2021. 
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Note that we exclude samples in the NewsCLIPping val / test sets across all splits for the VisualNews pretraining dataset. 

• Binary classification: pristine or falsified
• Balanced wrt captions, labels

• CLIP (Radford et al., 2021): pretrained on 
400M web corpus

• VisualBERT (Li et al., 2019): pretrained on 
3M Conceptual Captions (Sharma et al., 
2018) or 1M VisualNews (Liu et al., 2020)

Experimental Setup
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Uloom school…
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• Same binary classification task
• 100 sample subset

~25% from each split
~50% pristine, falsified

• Before and after internet search
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Takeaways

● The automation of cheapfakes is now a realistic threat. 

● Humans are susceptible to fakes from NewsCLIPpings.

● Models require improvements in understanding of symbols, facial 
expressions, and locations.



Thank you!
https://github.com/g-luo/news_clippings

http://arxiv.org/abs/2104.05893

https://github.com/g-luo/news_clippings
http://arxiv.org/abs/2104.05893

